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Abstract—This paper investigates the use of a DenseNet-169
architecture for a machine learning pipeline in handwriting
analysis, incorporating explainable AI techniques to enhance
interpretability. The initial model functions as a validation
system, leveraging image classification to categorize handwritten
text into three classes: valid (sharp, clear English text), invalid
(blurry, containing other languages, or excessively zoomed), and
zoomed. This facilitates effective data filtering by removing
unusable images. The model utilizes preprocessing techniques
like normalization and resolution adjustment to optimize perfor-
mance. Following image validation, a second model, also based on
DenseNet-169, tackles pressure determination. This model clas-
sifies handwritten text into low and high-pressure categories.To
gain deeper insights into the models’ decision-making processes,
we employed LIME (Local Interpretable Model-agnostic Expla-
nations). LIME generates visual explanations that highlight the
image regions most influential for a particular classification. This
allows us to understand why the image validation model classifies
an image as valid, for instance, by visualizing the specific features
(e.g., sharpness, character clarity) contributing to that decision.
Similarly, LIME can explain the pressure determination model’s
reasoning, pinpointing image features indicative of low or high
pressure handwriting.

This two-part system, coupled with LIME explainability,
demonstrates the effectiveness of deep learning for initial stages of
handwriting analysis. It allows for efficient data filtering, pressure
level classification, and interpretable insights into the models’
decision-making processes. This paves the way for further explo-
ration of feature extraction and advanced recognition techniques
in the handwriting analysis domain, while ensuring a level of
explainability crucial for real-world applications.

I. INTRODUCTION

This paper presents a comprehensive approach to handwrit-
ten text analysis, addressing the inherent challenges posed by
variations in writing styles, image quality, and the pressure ap-
plied during writing. Traditional methods often rely on hand-
crafted features, which may not capture the full complexity of
handwritten text. To overcome these limitations, we propose a
two-part machine learning pipeline utilizing a DenseNet-169
convolutional neural network (CNN) architecture, harnessing
the power of deep learning to automatically extract meaningful
features directly from handwritten text images.

The first component of our pipeline focuses on image
validation, a critical step in the analysis process. Handwritten
text images are classified into three distinct classes: Valid,
Invalid, and Zoomed. Valid images exhibit clear, sharp writing
in the English language and are deemed suitable for further
analysis. Invalid images, on the other hand, are unsuitable due
to factors such as blurriness, presence of languages other than

English, or excessive zooming. By filtering out such images,
the system streamlines the analysis process by focusing on
relevant data. Zoomed images indicate improper capture, often
requiring additional preprocessing before analysis.

To enhance the performance of the validation model, various
image pre-processing techniques are employed, including nor-
malization of pixel values and resolution adjustments. Normal-
ization reduces sensitivity to variations in image intensity, such
as lighting conditions, while resolution adjustments ensure
consistency in size and aspect ratio, allowing the model to
focus on essential features of the handwriting, such as stroke
width and character spacing.

To provide deeper insights into the validation model’s
decision-making process, we leverage LIME (Local Inter-
pretable Model-agnostic Explanations). LIME generates visual
explanations highlighting influential image regions, allowing
us to understand why an image is classified as valid, invalid,
or zoomed. For instance, LIME might produce a heatmap
visualization where brighter areas indicate regions that signif-
icantly contributed to the classification, such as well-defined
characters or consistent spacing.

The second component of our pipeline addresses pressure
determination, which plays a crucial role in handwriting
analysis. Validated images are classified into two categories
based on the pressure applied during writing: Low Pressure
and High Pressure. Pressure analysis can potentially reveal
underlying information about the writer’s state of mind or
physical condition. For example, high-pressure handwriting
might suggest agitation or anxiety, while low-pressure hand-
writing could indicate fatigue or illness.

Similar to the image validation model, LIME can be em-
ployed to understand the pressure determination model’s rea-
soning. LIME generates visual explanations pinpointing image
features indicative of low or high-pressure handwriting. This
interpretability provides valuable insights into the models’
decision-making processes, crucial for real-world applications.

In summary, our approach demonstrates the effectiveness
of a deep learning-based pipeline for handwritten text anal-
ysis, showcasing the application of DenseNet-169 for image
validation and pressure determination. By incorporating LIME
for interpretability, we not only achieve efficient data filtering
and pressure classification but also gain valuable insights into
the models’ decision-making processes, enhancing trust and
understanding in real-world applications.



II. RELATED WORKS

Image Validation for Handwriting Analysis: Fiel and Sablat-
nig (2015) pioneered the application of deep learning for writer
identification in handwritten documents [1]. They employed an
eight-layer CNN to generate feature vectors for each author
based on the network’s activation features. These features
were then compared with precomputed features stored in a
database for identification. Similarly, Kumar et al. (2020)
presented a segmentation-free deep learning approach for
offline text-independent handwriting identification, achieving
high accuracy on popular datasets [2].

Pressure Determination using Deep Learning: While not di-
rectly addressing pressure determination, Chaubey and Arjaria
explored personality prediction through handwriting analysis
using CNNs [3]. Their work demonstrates the potential of deep
learning models to extract features from handwriting images
that may correlate with pressure levels.

Deep Learning for Handwriting Features: Bluche et al.
(2018) proposed a recurrent neural network (RNN) architec-
ture for learning a discriminative representation of handwritten
characters. Their work highlights the effectiveness of deep
learning in extracting features from handwritten text images
[4].

Writer Identification with Deep Belief Networks: Li et al.
(2014) investigated the use of deep belief networks (DBNs)
for writer identification. Their findings suggest that DBNs
can achieve competitive performance compared to traditional
methods [5].

Handwritten Character Recognition with CNNs: Graves et
al. (2008) were among the early pioneers in applying CNNs for
handwritten character recognition. Their work laid the ground-
work for further exploration of deep learning architectures in
this domain [6].

These studies showcase the growing adoption of deep learn-
ing architectures for various tasks within handwriting analysis.
Your project contributes to this field by leveraging a DenseNet-
169 CNN for image validation and pressure classification,
offering a two-part approach to streamline the initial stages
of analysis.

III. DATASET

The dataset used for training and evaluating the models
in this project was constructed from two primary sources:
Manually Collected Data: A dataset of handwritten text images
was manually collected from various users. Participants were
instructed to write a specific paragraph of text on paper
and upload a digital image of their writing. This approach
ensured a degree of consistency in the content and lan-
guage used in the handwritten samples. IAM Handwriting
Dataset: The publicly available IAM Handwriting Database
(https://ieeexplore.ieee.org/document/6628844) was incorpo-
rated to supplement the manually collected data. The IAM
dataset provides a rich collection of handwritten text images
with various writing styles.

To address potential limitations in dataset size and achieve
a more robust model, albumentation augmentation techniques

Fig. 1. Full workflow of the proposed model

were employed. Albumentation is a popular library offering a
variety of image augmentation methods [7]. By applying these
techniques, the dataset was artificially expanded, introducing
variations in factors like rotation, scale, and noise. This data
augmentation process helps the model generalize better and
reduces the risk of overfitting on the training data. This
combined approach, utilizing both manually collected data
and a publicly available dataset with augmentation techniques,
helped create a diverse and comprehensive dataset for training
and evaluating the image validation and pressure determination
models.

IV. PROPOSED MODEL

The core architecture of the image validation and pressure
determination models in this project utilizes a pre-trained
DenseNet-169 convolutional neural network (CNN) followed
by additional convolutional layers and a final classification
layer. This strategy maximizes the feature extraction capabili-
ties of DenseNet-169 while integrating task-specific layers for
image validation and pressure determination objectives.

The model begins with DenseNet-169 pre-trained on the
ImageNet dataset [1], offering robust feature representations
learned from a diverse range of images. By excluding the
topmost classification layers (\verb—include top=False—),
we retain the valuable feature extraction capabilities while
customizing the network with additional layers for our specific
tasks. To maintain the learned representations, the pre-trained
weights are frozen (\verb—base model.trainable = False—),
focusing training on the introduced layers.

Following DenseNet-169, two convolutional layers are
added to further refine features. The first layer employs 256
filters with a (3, 3) kernel size and ReLU activation, enhancing
task-specific features. The second layer utilizes 128 filters with
the same kernel size and activation, building upon the extracted
features. Max pooling layers are incorporated after each con-
volutional layer to downsample feature maps and introduce
invariance to small shifts in input images. Additionally, a
dropout layer with a rate of 0.25 helps prevent overfitting by
randomly deactivating a portion of activations during training.

After flattening the feature maps, two fully-connected
(dense) layers follow. The first dense layer with 256 neurons
and ReLU activation introduces non-linear transformations to



Fig. 2. Lime Explainer Visualisations for a test image

capture complex feature relationships. The second dense layer
matches the number of classes (3 for image validation, 2 for
pressure determination) and uses softmax activation to output
class probability distributions.

The training process employs the Adam optimizer for effi-
cient optimization, combining features of AdaGrad and RM-
SProp. Categorical crossentropy loss is chosen for multi-class
classification tasks, measuring the disparity between predicted
and true class distributions. Model evaluation primarily relies
on accuracy, indicating the proportion of correctly classified
images.

To enhance model interpretability, LIME explainability is
integrated for classification insight. LIME generates visual
explanations highlighting influential image regions, aiding
in understanding model decisions for image validation and
pressure determination.

V. RESULTS

Our proposed deep learning pipeline achieved remarkable
results in both image validation and pressure determination
tasks for handwriting analysis, with the added benefit of inter-
pretability through the Lime explainer. The image validation
model demonstrated exceptional learning capabilities, reaching
a peak training accuracy of 97%. Additionally, Lime explainer
accurately pinpointed the areas of the text responsible for
classifying the image into a certain class, providing valu-
able insights into the model’s decision-making process. This
signifies the model’s ability to effectively extract and learn
patterns within the training data for classifying various types of
handwritten text images, with Lime enhancing interpretability.

The proficiency of the image validation model translated
exceptionally well to unseen data, with the model achiev-
ing validation and test accuracies exceeding 96.5%. Lime
explainer further validated the model’s performance by ac-
curately highlighting influential regions within the images,

TABLE I
COMPARISON BETWEEN DIFFERENT MODELS

Model Accuracy
Validation Model 97.4%
Pressure Model 95.6%
Our proposed model 96.6%

reinforcing the model’s generalization capabilities. These high
accuracies and Lime’s insights suggest that the image valida-
tion model generalizes effectively, allowing it to accurately
classify new handwritten text images beyond the training set.

Similarly, the pressure determination model exhibited a
slightly lower peak training accuracy of 91% compared to the
image validation model. However, Lime explainer provided
valuable insights into the model’s decision-making process
by accurately identifying the areas of the text contributing to
pressure classification. Despite the lower training accuracy, the
pressure determination model showcased impressive general-
ization capabilities, achieving validation and test accuracies
surpassing 96.5%. Lime’s ability to correctly find the areas of
the text responsible for classifying pressure levels further vali-
dated the model’s effectiveness in classifying unseen handwrit-
ten text samples. This suggests that the model can effectively
learn the underlying patterns distinguishing between low and
high-pressure handwriting, with Lime offering transparency
and interpretability in its classifications.

VI. CONCLUSION

In conclusion, this project underscores the efficacy of a
deep learning pipeline for the initial stages of handwriting
analysis. The image validation model demonstrated outstand-
ing accuracy, exceeding 96.5 on unseen data, indicating its
adeptness in classifying various handwritten text images ef-
fectively. Moreover, the pressure determination model, de-
spite exhibiting a slightly lower training accuracy, showcased
impressive generalization capabilities, with a test accuracy
surpassing 96.5 .This underscores its potential in analyzing
pressure levels in unseen handwriting samples. Notably, the
Lime explainer added a layer of interpretability by accurately
identifying influential regions within the images, enhancing the
transparency and trustworthiness of the model’s classifications.

Overall, the high performance on unseen data underscores
the generalizability and robustness of the models developed in
this project. Future endeavors could focus on refining pressure
determination techniques further and exploring the impact of
utilizing larger and more diverse datasets. This research serves
as a stepping stone for delving deeper into the realm of deep
learning in handwriting analysis, with promising applications
in document processing, forensic science, and various other
domains.
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