

IBM GRM PROJECT REPORT

ON

Data Integration and Transformation

Using Box API and IBM DB2

 Submitted by:

Annem Siva Pranav Reddy,

Aren Dias,

Garret Fernandez,

Kasibhatta Suprabhat

Objective
The goal of this project is to process and analyze e-commerce transactional data using

Apache Spark, generate a consolidated order summary and product sales insights, and store

the results in an IBM Db2 database for further use, such as business intelligence dashboards

or reporting.

Tools & Technologies:
- Apache Spark (PySpark) – for distributed data processing

- IBM Db2 on Cloud – as the target relational database

- CSV Files – cleaned source data for orders, products, users, etc.

- Spark JDBC – to write results to Db2

- Google Colab / Jupyter Notebook – used for development and testing

Source Datasets
All source data was pre-cleaned and stored as CSV files in `/content/Source_Data/`.

Dataset Name Description

cleaned_orders.csv Basic order details

cleaned_order_items.csv Items associated with each order

cleaned_users.csv Customer/user information

cleaned_products.csv Product catalog

cleaned_distribution_centers.csv Details of product distribution centers

cleaned_inventory_items.csv Mapping of inventory items to products

About our Dataset:
The dataset used in this project comes from a retail business and contains information

about users, products, orders, inventory, and distribution centers. It includes the following

CSV files:

• users.csv – Details about customers, such as their name, age, gender, location, and

how they found the website.

• orders.csv – Basic information about each order, including when it was placed,

shipped, delivered, or returned.

• order_items.csv – Item-level details for each order, showing which products were

bought and their status.

• products.csv – Information about products like name, category, brand, price, and

the distribution center they belong to.

• inventory_items.csv – Tracks each product in inventory, including when it was

added and sold.

• distribution_centers.csv – Locations of the warehouses where products are stored,

with coordinates.

• events.csv – Logs of user activity on the website, including browser used, city, and

type of action taken.

These files together help us analyze how customers interact with the system, what they buy,

and how products move through the supply chain.

Our Work

Step 1: Connecting to Box and Handling Files

This Python script demonstrates a complete solution for interacting with Box, a cloud

content management platform, using OAuth2 refresh tokens. The script supports both

downloading and uploading files between local storage and Box folders using the official

boxsdk.

• Environment Setup and Configuration: The script starts by loading environment

variables using the dotenv package. These variables store sensitive credentials and

configuration details.

• Authenticating with Box Using OAuth2: Box uses OAuth2 for secure access. This

function handles the authentication using a refresh token, allowing for token

renewal without user interaction.

https://box.com/

• Downloading Files from a Box Folder: The download_box_files() function

connects to a specified Box folder, filters files by prefix, and downloads them locally.

• Uploading Files to a Box Folder: The upload_file_to_box() function allows

uploading a file from the local system to a specified Box folder.

• Script Execution and Workflow: When run directly, the script creates the local

data directory and downloads only files with a specific prefix (cleaned_) from Box.

Step 2: Connecting to IBM Db2 and Creating a Table

This Python script establishes a secure connection to an IBM Db2 cloud database and

performs the following:

1. Creates a table (if not already present),

2. Inserts data into it from a local CSV file.

• Environment Configuration: The script reads database credentials and connection

details from environment variables, with hardcoded defaults as fallbacks.

• Establishing Connection to Db2: The get_db2_connection() function builds a Data

Source Name (DSN) string and attempts a secure connection over SSL.

• Creating and Populating the Table: The create_and_insert_distribution_centers()

function handles two main tasks:

1. Creating the distribution_centers table.

2. Inserting records from a CSV file.

Next, the CSV file is read and inserted row by row:

Step 3: Uploading Cleaned CSVs to IBM Db2 using PySparkLoad CSV Data:

This script uses Apache Spark (PySpark) to:

1. Load CSV files,

2. Preview and transform them using Spark DataFrames,

3. Upload them efficiently to IBM Db2 using JDBC.

It is designed for batch-oriented data ingestion into a cloud database.

• Environment Configuration & Dependencies: The script uses environment

variables for all credentials and file paths. It loads these using dotenv and also

initializes Spark using findspark.

• Initializing the Spark Session: The function get_spark_session() sets up a

SparkSession and configures it with the IBM Db2 JDBC driver.

• Configuring JDBC Properties: Connection properties for writing to Db2 are

returned by get_jdbc_properties()

The script uses secure SSL connection and batch insert to improve performance.

The JDBC URL is assembled separately:

• Uploading CSV Files to Db2: The core logic of the upload is in upload_csv_to_db2():

1. Reads the CSV as a Spark DataFrame,

2. Prints schema and sample rows,

3. Uploads it to Db2 using .write.format("jdbc").

Step 5 : Load Cleaned Source Data and Generate Order Summary, Then Write to Db2

• Load the cleaned source CSV files into Spark DataFrames. These include product

data, order items, orders, users, inventory items, and distribution centers.

• Perform multiple joins across these DataFrames to enrich the order details. This

includes linking order information with user details, product data, inventory items,

and distribution center information.

• Select and assemble relevant columns to create a comprehensive order summary.

This summary includes order IDs, user details (name, email, city), product details,

quantities, prices, and distribution center names.

• Write the enriched order summary DataFrame into the Db2 database table named

ORDER_SUMMARY.

• Use Spark’s JDBC capabilities with overwrite mode to ensure the database table is

refreshed with the latest data.

Step 6 : Calculate Most Sold Products by Aggregation and Write to Db2

• Load the cleaned order items, inventory items, products, and distribution center

CSV files into Spark DataFrames.

• Join these DataFrames to connect sales data with product and distribution center

information.

• Aggregate the total quantity sold for each product per distribution center by

grouping on product ID, product name, and distribution center.

• Sort the results in descending order based on total quantities sold to identify top-

selling products.

• Write the aggregated results into the Db2 table named MOST_SOLD_PRODUCTS.

• Use Spark JDBC with overwrite mode to update the Db2 table with the latest

aggregation results.

Step 7 : Run the Full Pipeline Script

• Use a PowerShell script to automate the pipeline execution.

• The script sets the working directory to its own location.

• It activates the Python virtual environment to ensure dependencies and

environment variables are properly loaded.

• Sequentially run the following Python scripts:

o box_operations.py for Box file operations.

o db2_data_upload.py to upload cleaned CSV source data to Db2 tables.

o most_sold_products.py to calculate and upload the most sold products

aggregation.

o order_summary.py to generate and upload the enriched order summary.

• The script prints progress and completion messages for tracking.

• This automation ensures the entire data pipeline runs smoothly in the correct order

with consistent environment settings.

Data flow Diagram

Conclusion
The pipeline efficiently integrates and transforms data from multiple sources — orders,

users, products, inventory, and distribution centers — into meaningful, aggregated insights

using PySpark. By joining these datasets, selecting relevant fields, and performing group-

wise aggregations, the workflow identifies top-selling products across different distribution

centers. This structured approach not only ensures data completeness through careful join

strategies but also leverages Spark’s distributed processing power to handle large-scale

data efficiently. The final summarized data is then seamlessly written back to an IBM Db2

database, enabling downstream analytics, reporting, and business decision-making based

on accurate, consolidated sales information.

