IBM GRM PROJECT REPORT
ON

Data Integration and Transformation
Using Box APl and IBM DB2

Submitted by:

Annem Siva Pranav Reddy,
Aren Dias,
Garret Fernandez,
Kasibhatta Suprabhat

Objective

The goal of this project is to process and analyze e-commerce transactional data using
Apache Spark, generate a consolidated order summary and product sales insights, and store
the results in an IBM Db2 database for further use, such as business intelligence dashboards
or reporting.

Tools & Technologies:

- Apache Spark (PySpark) - for distributed data processing

- IBM Db2 on Cloud - as the target relational database

- CSV Files - cleaned source data for orders, products, users, etc.

- Spark JDBC - to write results to Db2

- Google Colab / Jupyter Notebook - used for development and testing

Source Datasets

All source data was pre-cleaned and stored as CSV files in */content/Source_Data/".

Dataset Name Description

cleaned_orders.csv Basic order details
cleaned_order_items.csv Items associated with each order
cleaned_users.csv Customer/user information
cleaned_products.csv Product catalog
cleaned_distribution_centers.csv Details of product distribution centers
cleaned_inventory_items.csv Mapping of inventory items to products

About our Dataset:
The dataset used in this project comes from a retail business and contains information
about users, products, orders, inventory, and distribution centers. It includes the following

CSV files:

users.csv - Details about customers, such as their name, age, gender, location, and

how they found the website.

orders.csv - Basic information about each order, including when it was placed,
shipped, delivered, or returned.

order_items.csv - Item-level details for each order, showing which products were
bought and their status.

products.csv - Information about products like name, category, brand, price, and
the distribution center they belong to.

inventory_items.csv - Tracks each product in inventory, including when it was
added and sold.

distribution_centers.csv - Locations of the warehouses where products are stored,
with coordinates.

events.csv - Logs of user activity on the website, including browser used, city, and

type of action taken.

These files together help us analyze how customers interact with the system, what they buy,

and how products move through the supply chain.

PK | id —
\ PK | id
first_name

FK | user_id

PK | id

FK | product_id

last_name

sequence_number created_at

last_name
- session_id sold_al
created_al

age - o
ip_address product_catagory

gender

state

sireet_address
postal_code
city

country
lalitude
longitude
traffic_source

created_at

PK | order_id

city

state
postal_code
browser
traffic_source

url

event_type

PK | id

FK | user_id
status
gender
created_at
retumned_at
shipped_at

delivered_at

-

FK | order_id

FK | user_id

FK | product_id

FK | inventory_item_id
status

created_at
refumed_at

shipped_at

FK

product_name
product_brand
product_retail_price
product_depariment

product_sku

distribution_center_id

PK

FK

id

distribution_centre_id

cost
category
name
brand
retail_price:
department

sku

name

latitude

longitude

num_of_item

Our Work

Step 1: Connecting to Box and Handling Files

This Python script demonstrates a complete solution for interacting with Box, a cloud
content management platform, using OAuth2 refresh tokens. The script supports both
downloading and uploading files between local storage and Box folders using the official
boxsdk.

e Environment Setup and Configuration: The script starts by loading environment
variables using the dotenv package. These variables store sensitive credentials and
configuration details.

import io

import os

from dotenv import load_dotenv
from boxsdk import OAuth Client

from boxsdk.exception t PIException

load_dotenv()

BOX_CLIENT_ID = os.getenv(BOX_CLIENT_ID")
(_CLIENT_SECRET = os.getenv(BOX_CLIENT_SECRET")

REFRESH_TOKEN = os.getenv(BOX_REFRESH_TOKEN")

INLOAD_FOLDER_ID = os.getenv(' BOX_DOWNLOAD_FOLDER_ID")
OLDER ID = os.getenv(BOX UPLOAD FOLDER ID')

SOURCE_DATA_DIR = os.getenv(SOURCE_DATA_DIR")

e Authenticating with Box Using OAuth2: Box uses OAuth2 for secure access. This
function handles the authentication using a refresh token, allowing for token
renewal without user interaction.

https://box.com/

def get_box_client():
all{[BOX_CLIENT_ID, BOX CLIENT_SECRET, BOX REFRESH_TOK]
print(“"ERROR: One or more required Box OAuth2 environment variables (CLIENT ID, CLIENT_SECRET, REFRESH TOKEN) are missing from .env.")
print(“Ensure BOX_CLIENT_ID, BOX_CLIENT_SECRET are set from your Box App config, and BOX_REFRESH_TOKEN is obtained via get_box_tokens.py.")

r rn None

oauth = OAuth2(
client_id=BOX CLIENT ID,
client_secre LIENT_SECRET,
access_token=Noi

refresh_token EFRESH_TOKEN,

store_tokens=store_tokens,

Client(oauth)

xception

print(f"Error authenticating with Box using OAuth2? Refresh Token: {e}")
print("Possible causes: Invalid BOX CLIENT ID, BOX CLIENT SECRET, or expired/invalid BOX_REFRESH_TOKEN.™")
print(~If BOX_REFRESH_TOKEN is invalid, re-run get_box_tokens.py to get a new one.")

r rn None

Downloading Files from a Box Folder: The download_box_files() function

connects to a specified Box folder, filters files by prefix, and downloads them locally.
def download_box_files(folder_ id, target dir, file prefix_ filter=None):

client = get box_client()
if client is No

e [1

folder = client.folder(folder id).get()
print(f"Accessing Box folder '{folder.name}’ (ID: {folder id})...")

print(f"ERROR: Box API access failed for folder ID {folder_id}: {e.status} - {e.mess
if e.status =

print(“Please ensure the folder ID is correct and the Box application has a
elif e atus == 401:

print(“Authentication error. Please check your Box DAuth2 credentials and application authorization.™)
urn []

pt Exception as e:

print(f"An unexpected error occurred while accessing Box folder ID {folder id}: {

urn []
os_makedirs(target_dir, exist ok=True)

downloaded files = []

Uploading Files to a Box Folder: The upload_file_to_box() function allows
uploading a file from the local system to a specified Box folder.

f upload_file_to_box(folder_id, file_path):

client = get_box_client()
if client is None:

return None

if not os.path.exists(file path):
print(f"ERROR: Local file not found for upload: {file path}™)

return None

file name = os.path.basename(file path)
try:
folder = client.folder(folder id).get()
uploaded file = folder.upload(file path, file name=file name)
print(f“Uploaded file ‘{file_name}’' to Box folder '{folder.name}' (ID: {folder_id}) with file ID: {uploaded_file.id}")
return uploaded_file
t B IExceptio > e:

print(f"ERROR: Box API upload failed for file '{file name}' to folder ID {folder_id}: {e.status} - {e.message}")

if e.status
print(~Ple sure the upload folder ID is correct and exists.™)
elif e.statu
print(on denied. Please check your Box application’s permissions for write access.™)
uirn None
t Exception as
print(f~An unexpected error occurred during upload of '{file_name}': {e}")

return None

e Script Execution and Workflow: When run directly, the script creates the local
data directory and downloads only files with a specific prefix (cleaned_) from Box.

if __pname_ == "_ main_ ":

os.makedirs(SOURCE_DATA_DIR, exist_ok=True)

print("\n--- Attempting to download cleaned CSV files from Box using QOAuth2 Refresh Token ---")
download_box_files(

folder_id=BOX_DO

target_dir

file_prefix_filter='cleaned_"

Step 2: Connecting to IBM Db2 and Creating a Table

This Python script establishes a secure connection to an IBM Db2 cloud database and
performs the following:

1. Creates a table (if not already present),
2. Inserts data into it from a local CSV file.

¢ Environment Configuration: The script reads database credentials and connection
details from environment variables, with hardcoded defaults as fallbacks.

DB2 HOSTNAME = os.getenv(
DB2 UID = os.getenv(

DB2 PWD = os.getenv(
DB2 DATABASE = os.getenv(
DB2 PORT = os.getenv(

Establishing Connection to Db2: The get_db2_connection() function builds a Data
Source Name (DSN) string and attempts a secure connection over SSL.

get_d b2 connection():
dsn =
“DATABASE={DB2 DATABASE};"
“HOSTNAME={DB2 HOSTNAME};"
“PORT={DB2_PORT}; "
"PROTOCOL=TCPIP;"
"UID={DB2 UID};"
"PWD={DB2_PWD};"
"SECURITY=55L;"

conn = ibm db.connect{dsn, ", "")
print{"Successfully connected to Db2 database™)
return conn

except Exception as e:
print("Connection failed:", e)

return None

e C(Creating and Populating the Table: The create_and_insert_distribution_centers()
function handles two main tasks:
1. Creating the distribution_centers table.
2. Inserting records from a CSV file.
(conn, csv path):

create table sql -

ibm db.exec immediate(conn, create table sql)
print(

Exception
print(

Next, the CSV file is read and inserted row by row:

df = pd.read csv(csv path)
print(len(df)} rows into distribution_centers...™)
i, row df.iterrows():

insert sql =

{int(row["id°])}, "{row[nane’].replace(""", **"")}", {row|

ibm db.exec immediate(conn, insert sql)
print(
Exception

print(

Step 3: Uploading Cleaned CSVs to IBM Db2 using PySparkLoad CSV Data:
This script uses Apache Spark (PySpark) to:

1. Load CSV files,
2. Preview and transform them using Spark DataFrames,
3. Upload them efficiently to IBM Db2 using JDBC.
It is designed for batch-oriented data ingestion into a cloud database.

o Environment Configuration & Dependencies: The script uses environment
variables for all credentials and file paths. It loads these using dotenv and also
initializes Spark using findspark.

0s
findspark
pyspark.sql SparkSession

dotenv load dotenv

load dotenv()

findspark.init()

o Initializing the Spark Session: The function get_spark_session() sets up a
SparkSession and configures it with the IBM Db2 JDBC driver.

0O:
abs_jdbc_path = os.path.abspath(JDBC_DRIVER PATH)

os.path.exists(abs jdbc path):
print(, abs jdbc_path)
exit(1)

spark = SparkSession.builder \
.appName ()\
.config(, abs jdbc_path) \
.config(, abs_jdbc_path) \
.getorCreate()
spark

e Configuring JDBC Properties: Connection properties for writing to Db2 are
returned by get_jdbc_properties()

0:

: DB2 UID,
: DB2_PWD,

»

: DB2_SCHEMA,

The script uses secure SSL connection and batch insert to improve performance.
The JDBC URL is assembled separately:

:{DB2_PORT}/{DB2 DATABASE}"

e Uploading CSV Files to Db2: The core logic of the upload is in upload_csv_to_db2():
1. Reads the CSV as a Spark DataFrame,
2. Prints schema and sample rows,
3. Uploads it to Db2 using .write.format("jdbc").

(spark_session, csv file name, db table name, limit rows=
file path = os.path.join(SOURCE DATA DIR, csv_file name)
df = spark _session.read \
.option(o)\
.option()\
.csv(file path)

limit rows:

df = df.limit(limit rows)

df .write.format()\
.option(» get_jdbc_url()) \
.option(5 .{db table name}") \
.options(**get jdbc properties()) \
.mode()\

.save()

Step 5 : Load Cleaned Source Data and Generate Order Summary, Then Write to Db2

¢ Load the cleaned source CSV files into Spark DataFrames. These include product
data, order items, orders, users, inventory items, and distribution centers.

e Perform multiple joins across these DataFrames to enrich the order details. This
includes linking order information with user details, product data, inventory items,
and distribution center information.

e Select and assemble relevant columns to create a comprehensive order summary.
This summary includes order IDs, user details (name, email, city), product details,
quantities, prices, and distribution center names.

e Write the enriched order summary DataFrame into the Db2 database table named
ORDER_SUMMARY.

e Use Spark’s JDBC capabilities with overwrite mode to ensure the database table is
refreshed with the latest data.

def process and upload order summary(spark session, file limits=None):

print(”\n--- Processing and Uploading ORDER_SUMMARY to DB2 ---")

required_csv_details = {
"order_items_df" "file_name": "cleaned_order_items.csv"},
"products_df": {"file_name": "cleaned_products.csv"},
"inventory_df": {"file_name": "cleaned_inventory_items.csv"}

}

loaded dfs = {}
missing file found = False

try:

for alias, details in required csv_details.items():
file_name - details["file_name™]
file_path = os.path.join(SOURCE_DATA DIR, file_name)

if not os.path.exists(file_path):
print(f"ERROR: Required file for Order Summary not found: {file path}. Skipping this operation.™)
missing file found = True
break

print(f"Reading {file_name} as ‘{alias}'...")

temp_df = spark_session.read \
.option("header”, "true") \
.option("inferschema”, "true") \
.csv(file path)

limit = file limits.get(file name) if file limits else MNone
if limit is not None:
print(f"Limiting {file_name} to first {limit} rows.™)
temp_df = temp_df.limit(limit)

loaded dfs[alias] = temp df.alias(alias)

if missing file found:
print("ERROR: Missing required input files. Aborting ORDER SUMMARY generation.™)
return

order_items_df = loaded_dfs.get("order_items_df™)
products_df = loaded dfs.get("products df")
inventory_df = loaded_dfs.get("inventory_df")

if not all([order_items_df, products_df, inventory df]):
print("ERROR: Not all required DataFrames could be loaded. Aborting ORDER SUMMARY ETL.")
return

joined df = order_items df.join(
inventory_df,
order_items_ df["inventory item id"] == inventory df["id"],
"left”

)

joined_df = joined_df.join(

products_df,

col("inventory df.product id") == products df["id"],
)

order_summary_df = joined df.groupBy(order_items_df["order_id"]).agg(
count("*").alias("total_items"),
_sum(order_items_df["sale price"]).alias("total amount™),
countDistinct(col("inventory_df.product_id™)).alias("unique_products”),
_min(order_items df[“"created at"]).alias("first order date™),
_max(order_items_df["created at"]).alias("last_order_date")
).orderBy(“order_id")

print(“"Schema for ORDER_SUMMARY:")
order_summary_df.printSchema()
print("First 5 rows of ORDER_SUMMARY:")
order_summary_df.show(5)

Step 6 : Calculate Most Sold Products by Aggregation and Write to Db2

e Load the cleaned order items, inventory items, products, and distribution center
CSV files into Spark DataFrames.

¢ Join these DataFrames to connect sales data with product and distribution center
information.

e Aggregate the total quantity sold for each product per distribution center by
grouping on product ID, product name, and distribution center.

e Sort the results in descending order based on total quantities sold to identify top-
selling products.

e Write the aggregated results into the Db2 table named MOST_SOLD_PRODUCTS.

e Use Spark JDBC with overwrite mode to update the Db2 table with the latest
aggregation results.

process_and upload most sold products(spark session, file limits=
print(”\n--- Processing and Uploading MOST_SOLD_PRODUCTS to DB2 -

required csv_files = {
"order_items" leaned_order_items.csv",
"products” cleaned products.csv”,
"distribution” cleaned distribution centers.csv”,
"inventory”: "cleaned inventory items.csv"

}

order_items_df = None

products_df = none

distribution_df = None

inventory df = None

try:
or df name, file name in required csv files.items():
file path = os.path.join(SOURCE DATA DIR, file name)

if not os.path.exists(file path):
print(f"ERROR: Required file for Most Sold Products not found: {file path}. Skipping this operation.”)
return

print(f"Reading {file name}...™)

temp_df = spark session.read \
.option("header”, “true") \
.option("inferSchema™, "true") \
.csv(file path)

limit = file_limits.get(file_name) if file limits else None
if limit is ne one:
print(f"Limiting {file_name} to first {limit} rows.™)
temp df = temp df.limit(limit)

if df_name == "order_items":
order_items df = temp df
elif df_name == "products”:

if df_name == “"order_items":
order_items df = temp df

elif df_name == "products™:
products_df emp_df

elif df_name distribution™:
distribution_df = temp_df

elif df_name == "inventory":
inventory df = temp df

if not all([order items df, products df, distribution df, inventory df]):
nt("ERROR: Not all required DataFrames could be loaded. Aborting Most Sold Products analysis.™)
urn

most_sold_products = order_items_df \
.join(inventory df, order_items_df["inventory_ item id"] == inventory df["id"], "left") \
.join(products_df, inventory df["product id"] == products df["id"], "left") \
.join(distribution df, inventory df["product distribution center id"] == distribution df["id"], "left") \
. groupBy(
products df["id"].alias(" »
products_df["name”].al ct_n Mo
distribution df["name"].alias("distribution_center™)

)\
tal quantity sold™)

.orderBy("total quantity sold”, ascending=False)

print(“Schema for MOST_SOLD PRODUCTS:")
most_sold_products.printschema()
print("First 5 rows of MOST_SOLD_PRODUCTS:™)
most_sold_products.show(5)

Step 7 : Run the Full Pipeline Script
e Use a PowerShell script to automate the pipeline execution.
e The script sets the working directory to its own location.

e Itactivates the Python virtual environment to ensure dependencies and
environment variables are properly loaded.

e Sequentially run the following Python scripts:
o box_operations.py for Box file operations.
o db2_data_upload.py to upload cleaned CSV source data to Db2 tables.

o most_sold_products.py to calculate and upload the most sold products
aggregation.

o order_summary.py to generate and upload the enriched order summary.
e The script prints progress and completion messages for tracking.

e This automation ensures the entire data pipeline runs smoothly in the correct order
with consistent environment settings.

$scriptDir = Split-Path -Parent $MyInvocation.MyCommand.Definition
Set-Location -Path $scriptDir

$venvPython = Join-Path $scriptDir ".\.venv\Scripts\python.exe"

>ath $venvPython)) {
Virtual environment Python executable not found: $venvPython. Please ensure .venv is created and activated at least once.”

Write-Host "Running pipeline using Python from virtual environment: $venvPython"

$boxIntegrationscript = Join-Path $scriptbDir "scripts\box operations.py”
$db2UploadScript = Join-Path $scriptDir "scripts\db2 data_upload.py
$mostSoldScript = Join-Path $scriptDir "scripts\most_sold_products.py
$ordersummaryscript = Join-Path $scriptpir "scripts\order_ summary

$venvPython $boxIntegrationScript

$venvPython $db2uploadscript

$venvPython $mostSoldScript

& gvenvPython $ordersummaryscript

Write-Host "Pipeline execution complete.™

Data flow Diagram

Uncleaned csv files

Uploaded to

Box DB2

Files read from box

uploaded to

'Most sold products' and
'Order Summary' Table
created

CSV Files cleaned

Uplaocded to

Box iles transferred to—» DB2

Conclusion

The pipeline efficiently integrates and transforms data from multiple sources — orders,
users, products, inventory, and distribution centers — into meaningful, aggregated insights
using PySpark. By joining these datasets, selecting relevant fields, and performing group-
wise aggregations, the workflow identifies top-selling products across different distribution
centers. This structured approach not only ensures data completeness through careful join
strategies but also leverages Spark’s distributed processing power to handle large-scale
data efficiently. The final summarized data is then seamlessly written back to an IBM Db2
database, enabling downstream analytics, reporting, and business decision-making based
on accurate, consolidated sales information.

