IBM GRM PROJECT REPORT
ON

Data Integration and Transformation
Using Box APl and IBM DB2

Submitted by:

Annem Siva Pranav Reddy,
Aren Dias,
Garret Fernandez,
Kasibhatta Suprabhat

Objective

The goal of this project is to process and analyze e-commerce transactional data using
Apache Spark, generate a consolidated order summary and product sales insights, and store
the results in an IBM Db2 database for further use, such as business intelligence dashboards
or reporting.

Tools & Technologies:

- Apache Spark (PySpark) - for distributed data processing

- IBM Db2 on Cloud - as the target relational database

- CSV Files - cleaned source data for orders, products, users, etc.

- Spark JDBC - to write results to Db2

- Google Colab / Jupyter Notebook - used for development and testing

Source Datasets

All source data was pre-cleaned and stored as CSV files in */content/Source_Data/".

Dataset Name Description

cleaned_orders.csv Basic order details
cleaned_order_items.csv Items associated with each order
cleaned_users.csv Customer/user information
cleaned_products.csv Product catalog
cleaned_distribution_centers.csv Details of product distribution centers
cleaned_inventory_items.csv Mapping of inventory items to products

About our Dataset:
The dataset used in this project comes from a retail business and contains information
about users, products, orders, inventory, and distribution centers. It includes the following

CSV files:

e users.csv - Details about customers, such as their name, age, gender, location, and
how they found the website.

e orders.csv - Basic information about each order, including when it was placed,
shipped, delivered, or returned.

e order_items.csv - [tem-level details for each order, showing which products were

bought and their status.

e products.csv - Information about products like name, category, brand, price, and
the distribution center they belong to.

¢ inventory_items.csv - Tracks each product in inventory, including when it was
added and sold.

e distribution_centers.csv - Locations of the warehouses where products are stored,

with coordinates.

e events.csv - Logs of user activity on the website, including browser used, city, and

type of action taken.

These files together help us analyze how customers interact with the system, what they buy,
and how products move through the supply chain.

e =
\ PK | id
first_name

last_name
last_name
email
age
gender
state
street_address
postal_code
city
country
latitude
longitude
traffic_source

created_at

FK

user_id
sequence_number
session_id
created_at
ip_address
city
state
postal_code
browser
traffic_source
url

event_type

status
gender
created_at
returned_at
shipped_at

delivered_at

FK | inventory_item_id
status

created_at
retumed_at

shipped_at

product_id

created_at

sold_at

cost
product_catagory
product_name
product_brand
product_retail_price
product_department

product_sku

distribution_center_id

name

latitude

longitude

PK | id
PK | id
PK FK | order_id |
FK _centre_id
FK | user_id
FK | user_id -
- cost
FK | product_id

category
name
brand
retail_price
department

sku

num_of_item

Our Work

Step 1: Connecting to Box and Handling Files

This Python script demonstrates a complete solution for interacting with Box, a cloud
content management platform, using OAuth2 refresh tokens. The script supports both
downloading and uploading files between local storage and Box folders using the official
boxsdk.

e Environment Setup and Configuration: The script starts by loading environment
variables using the dotenv package. These variables store sensitive credentials and
configuration details.

import io
t os
m dotenv import load_dotenv
boxsdk import OAu Client

from boxsdk.exception import BoxAPIException
load_dotenv()

BOX_CLIENT ID = os.getenv('BOX_CLIENT ID")
BOX_CLIENT_SECRET = os.getenv('BOX_CLIENT_SECRET")

BOX_REFRESH_TOKEN = os.getenv('BOX_REFRESH_TOKEN')

BOX_DOWNLOAD_FOLDER_ID = os.getenv('BOX_DOWNLOAD FOLDER ID")
BOX_UPLOAD_FOLDER_ID = os.getenv('BOX_UPLOAD FOLDER ID')

SOURCE_DATA DIR = os.getenv("SOURCE_DATA DIR")

e Authenticating with Box Using OAuth2: Box uses OAuth?2 for secure access. This
function handles the authentication using a refresh token, allowing for token
renewal without user interaction.

def get_box_client():
if not all([BOX_CLIENT_ID, BOX_CLIENT_SECRET, BOX_REFRESH_TOKEN]):
print("ERROR: One or more required Box OAuth2 environment variables (CLIENT_ID, CLIENT_SECRET, REFRESH_TOKEN) are missing from .env.")
print("Ensure BOX_CLIENT_ID, BOX_CLIENT_SECRET are set from your Box App config, and BOX_REFRESH_TOKEN is obtained via get_box_tokens.py.")

return None

oauth = OAuth2(
client_id=BOX_CLIENT_ID,
client_secret=BOX_CLIENT SECRET,
access_token=None,
refresh_token=BOX_REFRESH_TOKEN,

store_tokens=store_tokens,

turn Client(oauth)

Exception as

print(f"Error authenticating with Box using OAuth2 Refresh Token: {e}")

print(“Possible causes: Invalid BOX_CLIENT_ID, BOX_CLIENT_SECRET, or expired/invalid BOX_REFRESH_TOKEN.")
print("If BOX_REFRESH_TOKEN is invalid, re-run get_box_tokens.py to get a new one.")

rn None

Downloading Files from a Box Folder: The download_box_files() function

connects to a specified Box folder, filters files by prefix, and downloads them locally.
def download_box_files(folder_id, target_dir, file prefix filter=None):

client = get_box_client()
if client is None:

urn [1]

folder = client.folder(folder_id).get()
print(f~Accessing Box folder *{folder.name}’ (ID: {folder_ id})...")
t BoxAPIException as e:
print(f"ERROR: Box API access failed for folder ID {folder_id}: {e.status} - {e.message}")
if e.status == 404:
print(“Please ensure the folder ID is correct and the Box application has access.")
elif e.status == 401:
print(“Authentication error. Please check your Box OAuth2 credentials and application authorizati
return []

pt Exception as e:

print(f“An unexpected error occurred while accessing Box folder ID {folder_id}: {e}")

urn []

os.makedirs(target_dir, exist_ok=True)

downloaded files = []

Uploading Files to a Box Folder: The upload_file_to_box() function allows
uploading a file from the local system to a specified Box folder.

def upload_file to_box(folder_id, file path):

client = get_box_client()
if client is None:

return None

if not os.path.exists(file_path):
print(f"ERROR: Local file not found for upload: {file_ path}")

return None

file name = os.path.basename(file_path)
try:
folder = client.folder(folder_id).get()
uploaded_file = folder.upload(file_path, file name=file_name)
print(f“Uploaded file '{file_name}' to Box folder '{folder.name}' (ID: {folder_id}) with file ID: {uploaded file.id}")
return uploaded_file
t BoxAPIException as e:
print(f"ERROR: Box API upload failed for file '{file name}' to folder ID {folder_id}: {e.status} - {e.message}")
if e.status == 404:
print(“Please ensure the upload folder ID is correct and exists.™)
elif e.status == 403:
print(“Permission denied. Please check your Box application’s permissions for write access.™)
return None

t Exception as e:

print(f~An unexpected error occurred during upload of *{file_name}': {e}")

return None

e Script Execution and Workflow: When run directly, the script creates the local
data directory and downloads only files with a specific prefix (cleaned_) from Box.

if _ name__ == "_ main__ ":

os.makedirs(SOURCE_DATA_DIR, exist_ok=True)

print(“\n--- Attempting to download cleaned CSV files from Box using OAuth2 Refresh Token ---")
download_box_files(

folder_id-BOX_DOWNLOAD_FOLDER_ID,

target_dir=SOURCE_DATA DIR,

file prefix filter='cleaned_-

Step 2: Connecting to IBM Db2 and Creating a Table

This Python script establishes a secure connection to an IBM Db2 cloud database and
performs the following:

1. Creates a table (if not already present),
2. Inserts data into it from a local CSV file.

e Environment Configuration: The script reads database credentials and connection
details from environment variables, with hardcoded defaults as fallbacks.

DB2_HOSTNAME = os.getenv(
DB2 UID = os.getenv(

DB2_PWD = os.getenv(
DB2_DATABASE = os.getenv(
DB2_PORT = os.getenv(

o Establishing Connection to Db2: The get_db2_connection() function builds a Data
Source Name (DSN) string and attempts a secure connection over SSL.

get_db2_connection() -
dsn = (

f"DATABASE={DB2 DATABASE};"
£"HOSTNAME={DB2_HOSTNAME};"
£"PORT={DB2_PORT};"
f“PROTOCOL=TCPIP;"
£"UID={DB2_UID};"
£"PWD={DB2_PWD};"
"SECURITY=SSL; "

conn = ibm_db.connect(dsn, "", "")
print(“Successfully connected to Db2 database™)
return conn
ept Exception as e:

print(“Connection failed:", e)

return None

Creating and Populating the Table: The create_and_insert_distribution_centers()
function handles two main tasks:

1. Creating the distribution_centers table.

2. Inserting records from a CSV file.

(conn, csv_path):

create table sql =

ibm db.exec immediate(conn, create table sql)

print(
Exception

print(

Next, the CSV file is read and inserted row by row:

df = pd.read _csv(csv_path)

print(len(df)} rows into distribution centers...™)
i, row df.iterrows():

insert sql =

{int(row[D}, "{row[].replace(" ",)}, {row[
ibm db.exec_immediate(conn, insert sql)
print(
Exception e:

print(

Step 3: Uploading Cleaned CSVs to IBM Db2 using PySparkLoad CSV Data:
This script uses Apache Spark (PySpark) to:

1. Load CSV files,
2. Preview and transform them using Spark DataFrames,
3. Upload them efficiently to IBM Db2 using JDBC.
It is designed for batch-oriented data ingestion into a cloud database.

e Environment Configuration & Dependencies: The script uses environment
variables for all credentials and file paths. It loads these using dotenv and also
initializes Spark using findspark.

0s
findspark
pyspark.sql SparkSession

dotenv load dotenv

load_dotenv()

findspark.init()

o Initializing the Spark Session: The function get_spark_session() sets up a
SparkSession and configures it with the IBM Db2 JDBC driver.

0O:
abs_jdbc_path = os.path.abspath(JDBC_DRIVER PATH)

os.path.exists(abs_jdbc path):
print(, abs_jdbc_path)
exit(1)

spark = SparkSession.builder \
.appName()\
.config(, abs _jdbc path) \
.config(, abs_jdbc_path) \
.getorCreate()
spark

e Configuring JDBC Properties: Connection properties for writing to Db2 are
returned by get_jdbc_properties()

0O:

: DB2_UID,
: DB2_PWD,

>

: DB2_SCHEMA,

The script uses secure SSL connection and batch insert to improve performance.
The JDBC URL is assembled separately:

:{DB2_PORT}/{DB2_DATABASE}"

o Uploading CSV Files to Db2: The core logic of the upload is in upload_csv_to_db2():
1. Reads the CSV as a Spark DataFrame,
2. Prints schema and sample rows,
3. Uploads it to Db2 using .write.format("jdbc").

(spark_session, csv_file name, db table name, limit rows=
file path = os.path.join(SOURCE DATA DIR, csv_file name)
df = spark_session.read \
.option(5)\
.option()\
.csv(file path)

limit rows:
df = df.limit(limit _rows)

df .write.format()\
.option(,» get jdbc url()) \
.option(o .{db_table name}") \
.options(**get jdbc properties()) \
.mode()\

.save()

Step 5 : Load Cleaned Source Data and Generate Order Summary, Then Write to Db2

e Load the cleaned source CSV files into Spark DataFrames. These include product
data, order items, orders, users, inventory items, and distribution centers.

e Perform multiple joins across these DataFrames to enrich the order details. This
includes linking order information with user details, product data, inventory items,
and distribution center information.

e Select and assemble relevant columns to create a comprehensive order summary.
This summary includes order IDs, user details (name, email, city), product details,
quantities, prices, and distribution center names.

e Write the enriched order summary DataFrame into the Db2 database table named
ORDER_SUMMARY.

e Use Spark’s JDBC capabilities with overwrite mode to ensure the database table is
refreshed with the latest data.

def process_and_upload_order_summary(spark session, file limits=None):
print("\n--- Processing and Uploading ORDER_SUMMARY to DB2 ---")

required_csv_details = {
"order_items_df": {"file_name": "cleaned order_items.csv"},
"products_df": {"file_name": "cleaned_products.csv"},
"inventory_df": {"file_name": "cleaned_inventory items.csv"}
}

loaded dfs = {}
missing file found = False

try:

for alias, details in required_csv_details.items():
file_name = details["file name™]
file_path = os.path.join(SOURCE_DATA DIR, file_name)

if not os.path.exists(file_path):
print(f"ERROR: Required file for Order Summary not found: {file path}. Skipping this operation.")
missing file found = True
break

print(f"Reading {file_name} as '

temp_df = spark_session.read \
.option("header”, "true") \
.option("inferSchema™, "true") \
.csv(file path)

falias}'...")

limit = file limits.get(file_name) if file_ limits else None
if limit is not None:
print(f"Limiting {file_name} to first {limit} rows.")
temp_df = temp_df.limit(limit)

loaded_dfs[alias] = temp_df.alias(alias)

if missing file found:
print("ERROR: Missing required input files. Aborting ORDER_SUMMARY generation.™)
return

order_items_df = loaded dfs.get("order_items_df")
products_df = loaded dfs.get("products_df")
inventory df = loaded_dfs.get("inventory df")

if not all([order_items df, products_df, inventory df]):
print(“ERROR: Not all required DataFrames could be loaded. Aborting ORDER_SUMMARY ETL.")
return

joined_df = order_items_df.join(
inventory_df,
order_items_df["inventory item id"] == inventory df["id"],
"left”

)

joined_df = joined_df.join(

products_df,

col("inventory df.product_id") == products_df["id"],
)

order_summary_df = joined df.groupBy(order_items_df["order_id"]).agg(
count("*").alias("total items"),
_sum(order_items_df["sale_price"]).alias("total_amount”),
countDistinct(col("inventory df.product_id")).alias("unique_products"”),
_min(order_items_df["created_at"]).alias("first_order_date"),
_max(order_items_df["created_at"]).alias("last_order_date")

) .orderBy("order_id")

print(“"Schema for ORDER_SUMMARY:")
order_summary_df.printSchema()
print("First 5 rows of ORDER_SUMMARY:")
order_summary_df.show(5)

Step 6 : Calculate Most Sold Products by Aggregation and Write to Db2

e Load the cleaned order items, inventory items, products, and distribution center
CSV files into Spark DataFrames.

e Join these DataFrames to connect sales data with product and distribution center
information.

e Aggregate the total quantity sold for each product per distribution center by
grouping on product ID, product name, and distribution center.

e Sort the results in descending order based on total quantities sold to identify top-
selling products.

e Write the aggregated results into the Db2 table named MOST_SOLD_PRODUCTS.

e Use Spark JDBC with overwrite mode to update the Db2 table with the latest
aggregation results.

def process_and_upload_most_sold products(spark_session, file limits=None):
print("\n--- Processing and Uploading MOST_SOLD PRODUCTS to DB2 ---")

required csv_files = {
"order_items": "cleaned order_items.csv",
"products”: “cleaned_products.csv”,
"distribu "cleaned_distribution_centers.csv”,
"inventory”: "cleaned_inventory items.csv"”

1

J

order_items_df = None

products_df = None

distribution_df = None

inventory_df = None

try:
for df_name, file _name in required csv_files.items():
file path = os.path.join(SOURCE_DATA DIR, file_ name)

if not os.path.exists(file_path):
print(f"ERROR: Required file for Most Sold Products not found: {file path}. Skipping this operation.™)
return

print(f"Reading {file_name}...")

temp_df = spark_session.read \
.option("header", "true") \
.option("inferSchema™, "true™) \
.csv(file_path)

limit = file_limits.get(file_name) if file_limits else None
if limit is None:
print(f"Limiting {file_name} to first {limit} rows.")
temp_df = temp_df.limit(limit)

if df_name == "order_items":
order_items_df = temp_df
elif df_name == "products”:

if df_name == "order_items":
order_items_df = temp_df

elif df_name == "products™:
products_df = temp_df

elif df_name "distribution”:
distribution_df = temp_df

elif df_name == "inventory":
inventory df = temp df

if not all([order_items_df, products_df, distribution_df, inventory df]):
print("ERROR: Not all required DataFrames could be loaded. Aborting Most Sold Products analysis.™)
return

most_sold products = order_items_df \
.join(inventory df, order_items_df["inventory item_id"] == inventory df["id"], "left") \

.join(products_df, inventory df["product id"] == products_df["id"], "left") \
.join(distribution_df, inventory df["product distribution_center_id"] == distribution df["id"], "left") \
.groupBy (

products_df["id"].alias("product_id"),

products_df["name™].alias("product_name"),

distribution_df["name"].alias("distribution_center"”)

_sum(lit(1)).alias("total_quantity sold™)

)\
.orderBy("total quantity sold", ascending=False)

print(“"Schema for MOST_SOLD_PRODUCTS:")
most_sold products.printSchema()
print("First 5 rows of MOST_SOLD_PRODUCTS:")
most_sold products.show(5)

Step 7 : Run the Full Pipeline Script
e Use a PowerShell script to automate the pipeline execution.
e The script sets the working directory to its own location.

e [tactivates the Python virtual environment to ensure dependencies and
environment variables are properly loaded.

e Sequentially run the following Python scripts:
o box_operations.py for Box file operations.
o db2_data_upload.py to upload cleaned CSV source data to Db2 tables.

o most_sold_products.py to calculate and upload the most sold products
aggregation.

o order_summary.py to generate and upload the enriched order summary.
e The script prints progress and completion messages for tracking.

e This automation ensures the entire data pipeline runs smoothly in the correct order
with consistent environment settings.

$scriptbi split-path -Parent $MyInvocation.MyCommand.Definition
Set-Location -Path $scriptbir

$venvPython = Join-Path $scriptDir ".\.venv\Scripts\python.exe"

if (-not (Test-Path $venvPython)) {
rite-Error "Virtual environment Python executable not found: $venvPython. Please ensure .venv is created and activated at least once.”

Write-Host "Running pipeline using Python from virtual environment: $venvPython™

$boxIntegrationScript = Join-Path $scriptDir "scripts\box operations.py”

$db2UploadScript = Join-Path $scriptDir "scripts\db2_data upload.py"
$mostSoldscript = Join-Path $scriptDir “scripts\most_sold products.py"
$orderSummaryScript = Join-Path $scriptDir “"scripts\order_summar:

& $venvPython $boxIntegrationScript

& $venvpython $db2uploadScript

& $venvPython $mostSoldScript

& $venvPython $orderSummaryScript

Write-Host "Pipeline execution complete

Data flow Diagram

Uncleaned csv files

Uploaded to

Box DB2

Files read from box

uploaded to

'Most sold products' and
'Order Summary' Table
created

CSV Files cleaned

Uplaoded to

Box iles transferred to—» DB2

Conclusion

The pipeline efficiently integrates and transforms data from multiple sources — orders,
users, products, inventory, and distribution centers — into meaningful, aggregated insights
using PySpark. By joining these datasets, selecting relevant fields, and performing group-
wise aggregations, the workflow identifies top-selling products across different distribution
centers. This structured approach not only ensures data completeness through careful join
strategies but also leverages Spark’s distributed processing power to handle large-scale
data efficiently. The final summarized data is then seamlessly written back to an IBM Db2
database, enabling downstream analytics, reporting, and business decision-making based
on accurate, consolidated sales information.

