

IBM GRM PROJECT REPORT
ON

Data Integration and Transformation
Using Box API and IBM DB2

 Submitted by:

Annem Siva Pranav Reddy,
Aren Dias,

Garret Fernandez,
Kasibhatta Suprabhat

	

Objective
The	goal	of	this	project	is	to	process	and	analyze	e-commerce	transactional	data	using	
Apache	Spark,	generate	a	consolidated	order	summary	and	product	sales	insights,	and	store	
the	results	in	an	IBM	Db2	database	for	further	use,	such	as	business	intelligence	dashboards	
or	reporting.	

Tools & Technologies:
-	Apache	Spark	(PySpark)	–	for	distributed	data	processing	
-	IBM	Db2	on	Cloud	–	as	the	target	relational	database	
-	CSV	Files	–	cleaned	source	data	for	orders,	products,	users,	etc.	
-	Spark	JDBC	–	to	write	results	to	Db2	
-	Google	Colab	/	Jupyter	Notebook	–	used	for	development	and	testing	

Source Datasets
All	source	data	was	pre-cleaned	and	stored	as	CSV	files	in	`/content/Source_Data/`.	

Dataset	Name	 Description	

cleaned_orders.csv	 Basic	order	details	

cleaned_order_items.csv	 Items	associated	with	each	order	

cleaned_users.csv	 Customer/user	information	

cleaned_products.csv	 Product	catalog	

cleaned_distribution_centers.csv	 Details	of	product	distribution	centers	

cleaned_inventory_items.csv	 Mapping	of	inventory	items	to	products	

About our Dataset:
The	dataset	used	in	this	project	comes	from	a	retail	business	and	contains	information	
about	users,	products,	orders,	inventory,	and	distribution	centers.	It	includes	the	following	
CSV	files:	

• users.csv	–	Details	about	customers,	such	as	their	name,	age,	gender,	location,	and	
how	they	found	the	website.	

• orders.csv	–	Basic	information	about	each	order,	including	when	it	was	placed,	
shipped,	delivered,	or	returned.	

• order_items.csv	–	Item-level	details	for	each	order,	showing	which	products	were	
bought	and	their	status.	

• products.csv	–	Information	about	products	like	name,	category,	brand,	price,	and	
the	distribution	center	they	belong	to.	

• inventory_items.csv	–	Tracks	each	product	in	inventory,	including	when	it	was	
added	and	sold.	

• distribution_centers.csv	–	Locations	of	the	warehouses	where	products	are	stored,	
with	coordinates.	

• events.csv	–	Logs	of	user	activity	on	the	website,	including	browser	used,	city,	and	
type	of	action	taken.	

These	files	together	help	us	analyze	how	customers	interact	with	the	system,	what	they	buy,	
and	how	products	move	through	the	supply	chain.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Our Work

Step	1:	Connecting	to	Box	and	Handling	Files	

This	Python	script	demonstrates	a	complete	solution	for	interacting	with	Box,	a	cloud	
content	management	platform,	using	OAuth2	refresh	tokens.	The	script	supports	both	
downloading	and	uploading	files	between	local	storage	and	Box	folders	using	the	official	
boxsdk.	

• Environment	Setup	and	Configuration:	The	script	starts	by	loading	environment	
variables	using	the	dotenv	package.	These	variables	store	sensitive	credentials	and	
configuration	details.	

	
• Authenticating	with	Box	Using	OAuth2:	Box	uses	OAuth2	for	secure	access.	This	

function	handles	the	authentication	using	a	refresh	token,	allowing	for	token	
renewal	without	user	interaction.	

	
	

• Downloading	Files	from	a	Box	Folder:	The	download_box_files()	function	
connects	to	a	specified	Box	folder,	filters	files	by	prefix,	and	downloads	them	locally.	

	
	

• Uploading	Files	to	a	Box	Folder:	The	upload_file_to_box()	function	allows	
uploading	a	file	from	the	local	system	to	a	specified	Box	folder.	

	
	
	
	

• Script	Execution	and	Workflow:	When	run	directly,	the	script	creates	the	local	
data	directory	and	downloads	only	files	with	a	specific	prefix	(cleaned_)	from	Box.	

	
	

Step	2:	Connecting	to	IBM	Db2	and	Creating	a	Table	

This	Python	script	establishes	a	secure	connection	to	an	IBM	Db2	cloud	database	and	
performs	the	following:	

1. Creates	a	table	(if	not	already	present),	

2. Inserts	data	into	it	from	a	local	CSV	file.	

• Environment	Configuration:	The	script	reads	database	credentials	and	connection	
details	from	environment	variables,	with	hardcoded	defaults	as	fallbacks.	

	
	

	

	

	

	

	

	

• Establishing	Connection	to	Db2:	The	get_db2_connection()	function	builds	a	Data	
Source	Name	(DSN)	string	and	attempts	a	secure	connection	over	SSL.	

	
• Creating	and	Populating	the	Table:	The	create_and_insert_distribution_centers()	

function	handles	two	main	tasks:	
1. Creating	the	distribution_centers	table.	
2. Inserting	records	from	a	CSV	file.	

	
	
Next,	the	CSV	file	is	read	and	inserted	row	by	row:	

	

Step	3:	Uploading	Cleaned	CSVs	to	IBM	Db2	using	PySparkLoad	CSV	Data:	
This	script	uses	Apache	Spark	(PySpark)	to:	

1. Load	CSV	files,	

2. Preview	and	transform	them	using	Spark	DataFrames,	

3. Upload	them	efficiently	to	IBM	Db2	using	JDBC.	

It	is	designed	for	batch-oriented	data	ingestion	into	a	cloud	database.	

• Environment	Configuration	&	Dependencies:	The	script	uses	environment	
variables	for	all	credentials	and	file	paths.	It	loads	these	using	dotenv	and	also	
initializes	Spark	using	findspark.	

	
	

• Initializing	the	Spark	Session:	The	function	get_spark_session()	sets	up	a	
SparkSession	and	configures	it	with	the	IBM	Db2	JDBC	driver.	

	
	

• Configuring	JDBC	Properties:	Connection	properties	for	writing	to	Db2	are	
returned	by	get_jdbc_properties()	

	
The	script	uses	secure	SSL	connection	and	batch	insert	to	improve	performance.	
The	JDBC	URL	is	assembled	separately:	

	
	
	

• Uploading	CSV	Files	to	Db2:	The	core	logic	of	the	upload	is	in	upload_csv_to_db2():	
1. Reads	the	CSV	as	a	Spark	DataFrame,	
2. Prints	schema	and	sample	rows,	
3. Uploads	it	to	Db2	using	.write.format("jdbc").	

	

	

Step	5	:	Load	Cleaned	Source	Data	and	Generate	Order	Summary,	Then	Write	to	Db2	

• Load	the	cleaned	source	CSV	files	into	Spark	DataFrames.	These	include	product	
data,	order	items,	orders,	users,	inventory	items,	and	distribution	centers.	

• Perform	multiple	joins	across	these	DataFrames	to	enrich	the	order	details.	This	
includes	linking	order	information	with	user	details,	product	data,	inventory	items,	
and	distribution	center	information.	

• Select	and	assemble	relevant	columns	to	create	a	comprehensive	order	summary.	
This	summary	includes	order	IDs,	user	details	(name,	email,	city),	product	details,	
quantities,	prices,	and	distribution	center	names.	

• Write	the	enriched	order	summary	DataFrame	into	the	Db2	database	table	named	
ORDER_SUMMARY.	

• Use	Spark’s	JDBC	capabilities	with	overwrite	mode	to	ensure	the	database	table	is	
refreshed	with	the	latest	data.	

	

	

	

Step	6	:	Calculate	Most	Sold	Products	by	Aggregation	and	Write	to	Db2	

• Load	the	cleaned	order	items,	inventory	items,	products,	and	distribution	center	
CSV	files	into	Spark	DataFrames.	

• Join	these	DataFrames	to	connect	sales	data	with	product	and	distribution	center	
information.	

• Aggregate	the	total	quantity	sold	for	each	product	per	distribution	center	by	
grouping	on	product	ID,	product	name,	and	distribution	center.	

• Sort	the	results	in	descending	order	based	on	total	quantities	sold	to	identify	top-
selling	products.	

• Write	the	aggregated	results	into	the	Db2	table	named	MOST_SOLD_PRODUCTS.	

• Use	Spark	JDBC	with	overwrite	mode	to	update	the	Db2	table	with	the	latest	
aggregation	results.	

	

	

	

Step	7	:	Run	the	Full	Pipeline	Script	

• Use	a	PowerShell	script	to	automate	the	pipeline	execution.	

• The	script	sets	the	working	directory	to	its	own	location.	

• It	activates	the	Python	virtual	environment	to	ensure	dependencies	and	
environment	variables	are	properly	loaded.	

• Sequentially	run	the	following	Python	scripts:	

o box_operations.py	for	Box	file	operations.	

o db2_data_upload.py	to	upload	cleaned	CSV	source	data	to	Db2	tables.	

o most_sold_products.py	to	calculate	and	upload	the	most	sold	products	
aggregation.	

o order_summary.py	to	generate	and	upload	the	enriched	order	summary.	

• The	script	prints	progress	and	completion	messages	for	tracking.	

• This	automation	ensures	the	entire	data	pipeline	runs	smoothly	in	the	correct	order	
with	consistent	environment	settings.	

	

	

Data flow Diagram

Conclusion
The	pipeline	efficiently	integrates	and	transforms	data	from	multiple	sources	—	orders,	
users,	products,	inventory,	and	distribution	centers	—	into	meaningful,	aggregated	insights	
using	PySpark.	By	joining	these	datasets,	selecting	relevant	fields,	and	performing	group-
wise	aggregations,	the	workflow	identifies	top-selling	products	across	different	distribution	
centers.	This	structured	approach	not	only	ensures	data	completeness	through	careful	join	
strategies	but	also	leverages	Spark’s	distributed	processing	power	to	handle	large-scale	
data	efficiently.	The	final	summarized	data	is	then	seamlessly	written	back	to	an	IBM	Db2	
database,	enabling	downstream	analytics,	reporting,	and	business	decision-making	based	
on	accurate,	consolidated	sales	information.	

